

PEDIATRIC UROLOGY CASE REPORTS

ISSN 2148-2969

http://www.pediatricurologycasereports.com

Combined Multicystic Dysplastic Kidney and Ureteropelvic Junction Obstruction in a Child

Manlio Sessink*

Department of Pediatrics, University of Alberta, Edmonton, Canada

Manlio Sessink

Department of Pediatrics,
University of Alberta,
Edmonton, Canada

E-mail: manlio.sessink@ikutrs.ca

Received: 03-Jun-2025, Manuscript No. PUCR-25-172537; **Editor assigned:** 05-Jun-2025, PreQC No. PUCR-25-172537 (PQ); **Reviewed:** 19-Jun-2025, QC No. PUCR-25-172537; **Revised:** 26-Jun-2025, Manuscript No. PUCR-25-172537 (R); **Published:** 03-Jul-2025, DOI: 10.14534/j-pucr.20222675702

Description

The coexistence of multicystic dysplastic kidney and Ureteropelvic Junction (UPJ) obstruction in a child represents a rare and intriguing developmental anomaly that bridges the fields of pediatric nephrology, urology, and embryology. Both Multicystic Dysplastic Kidney (MCDK) and UPJ obstruction are individually wellrecognized congenital abnormalities of the urinary tract, but their simultaneous occurrence in the same patient-either in the same kidney or contralateral kidneys-is exceptional. The combination challenges traditional embryologic theories and poses significant diagnostic and management dilemmas. Understanding the mechanisms that link these two pathologies provides valuable insight into renal morphogenesis and helps guide clinical decision-making to preserve renal function while minimizing unnecessary intervention.

Multicystic dysplastic kidney is one of the most common congenital renal anomalies, with an estimated incidence of approximately 1 in 4,000 live births. It arises from an early defect in nephrogenesis, typically resulting from abnormal interaction between the ureteric bud and the

metanephric blastema during the fifth to seventh week of gestation. Failure of normal branching morphogenesis leads to the formation of non-communicating cysts of varying sizes separated by dysplastic parenchyma containing primitive ducts, cartilage, and fibrous tissue. The occurrence of MCDK together with UPJ obstruction is rare, but several mechanisms have been proposed to explain their coexistence. One hypothesis suggests that both conditions may arise from a shared defect in ureteric bud development. If the ureteric bud fails to properly canalize or insert into the metanephric blastema, the result may be a spectrum of abnormalities ranging from dysplasia to partial obstruction.

DOI: 10.14534/j-pucr.20222675702

Alternatively, early obstruction at the ureteropelvic junction during embryogenesis may interfere with normal nephron differentiation, leading secondarily to dysplastic changes in the kidney. Experimental studies in animal models have demonstrated that early urinary tract obstruction can disrupt nephron induction and cystic transformation, lending support to the notion that MCDK may sometimes represent the end stage of severe obstruction.

The anatomic configuration of combined MCDK and UPJ obstruction varies. In most reported cases, the MCDK occurs on one side and the contralateral kidney exhibits UPJ obstruction. This arrangement supports a developmental or genetic predisposition affecting bilateral urinary tract morphogenesis. Less commonly, both lesions occur within the same kidney, producing a complex cystic and hydronephrotic appearance on imaging. The contralateral kidney may appear normal or display mild compensatory hypertrophy. The clinical implications differ significantly depending on whether

the obstruction involves the functional kidney or the dysplastic one.

Children with combined MCDK and UPJ obstruction are often detected prenatally through routine obstetric ultrasonography. A typical prenatal finding is unilateral multicystic renal mass with contralateral hydronephrosis, prompting postnatal investigation. In cases discovered after birth, presentations may include abdominal mass, urinary tract infection, hematuria, or failure to thrive. Because MCDK is usually non-functional, symptoms often arise from the obstructed contralateral kidney, which bears the physiological burden of filtration. Early and accurate diagnosis is therefore essential to prevent progressive renal damage in the functioning kidney.

The long-term prognosis for children with combined MCDK and UPJ obstruction is generally favorable if the functional kidney is preserved. Serial monitoring of renal function, blood pressure, and urinary tract infections is essential. Following successful pyeloplasty, most children achieve stable or improved renal function, while the dysplastic kidney typically continues to regress. Compensatory hypertrophy of the healthy renal parenchyma ensures adequate overall

function. Nevertheless, long-term vigilance remains necessary because children with congenital urinary tract malformations have an elevated lifetime risk of hypertension, proteinuria, and reduced renal reserve.

Conclusion

Combined multicystic dysplastic kidney and ureteropelvic junction obstruction in a child represents a rare but significant developmental renal disorder. It exemplifies how defects in early ureteric bud and metanephric blastema interaction can produce both cystic dysplasia and urinary tract obstruction, either within the same kidney or across both kidneys. While MCDK typically follows a benign, regressive course, the presence of UPJ obstruction in the contralateral functioning kidney demands careful monitoring and timely surgical correction to safeguard renal function. Advances in imaging, genetics, and minimally invasive surgery have improved outcomes dramatically, but lifelong follow-up remains essential. The study of such combined anomalies continues to illuminate the intricate pathways of renal development and offers valuable lessons for early detection, individualized care, and prevention of chronic kidney disease in children with congenital uropathies.